PREDICTION OF COMPRESSIVE STRENGTH AND DURABILITY OF HIGH PERFORMANCE CONCRETE BY ARTIFICIAL NEURAL NETWORKS

Authors

  • B.G. Vishnuram
  • K. Subramanian
  • P. Muthupriya
Abstract:

Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these models, training and testing using the available experimental results for 140 specimens produced with 7 different mixture proportions are used. The data used in the multi-layer feed forward neural networks models are designed in a format of eight input parameters covering the age of specimen, cement, metakaolin (MK), fly ash (FA), water, sand, aggregate and superplasticizer and in another set of specimen which contain SF instead of MK. According to these input parameters, in the multi-layer feed forward neural networks models are used to predict the compressive strength and durability values of concrete. It shown that neural networks have high potential for predicting the compressive strength and durability values of the concretes containing metakaolin, silica fume and fly ash.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Prediction of Pervious Concrete Permeability and Compressive Strength Using Artificial Neural Networks

Pervious concrete is a concrete mixture prepared from cement, aggregates, water, little or no fines, and in some cases admixtures. The hydrological property of pervious concrete is the primary reason for its reappearance in construction. Much research has been conducted on plain concrete, but little attention has been paid to porous concrete, particularly to the analytical prediction modeling o...

full text

prediction of pervious concrete permeability and compressive strength using artificial neural networks

pervious concrete is a concrete mixture prepared from cement, aggregates, water, little or no fines, and in some cases admixtures. the hydrological property of pervious concrete is the primary reason for its reappearance in construction. much research has been conducted on plain concrete, but little attention has been paid to porous concrete, particularly to the analytical prediction modeling o...

full text

Development of Artificial Neural Networks for Predicting Concrete Compressive Strength

This research work focuses on development of Artificial Neural Networks (ANNs) in prediction of compressive strength of concrete after 28 days. To predict the compressive strength of concrete six input parameters that are cement, water, silica fume, super plasticizer, fine aggregate and coarse aggregate are identified. A total of 639 different data sets of concrete was collected from the techni...

full text

Prediction of Lightweight Aggregate Concrete Compressive Strength

Nowadays, the better performance of lightweight structures during earthquake has resulted in using lightweight concrete more than ever. However, determining the compressive strength of concrete used in these structures during their service through a none-destructive test is a popular and useful method.  One of the main methods of non-destructive testing in the assessment of compressive strength...

full text

EVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS

In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables...

full text

the effect of taftan pozzolan on the compressive strength of concrete in the environmental conditions of oman sea (chabahar port)

cement is an essential ingredient in the concrete buildings. for production of cement considerable amount of fossil fuel and electrical energy is consumed. on the other hand for generating one tone of portland cement, nearly one ton of carbon dioxide is released. it shows that 7 percent of the total released carbon dioxide in the world relates to the cement industry. considering ecological issu...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 1

pages  189- 209

publication date 2011-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023